ANADOLU

In Affiliation with JOHNS HOPKINS MEDICINE

OFFLINE ADAPTIVE RADIOTHERAPY

Hale Basak CAGLAR Anadolu Medical Center Hospital Istanbul, TURKEY

Disclosures and disclaimer

- An honorarium is provided by Accuray for this presentation
- Advisory board member Brainlab, Varian
- Lecturer for visionRT
- The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of Accuray Incorporated or its subsidiaries. No official endorsement by Accuray Incorporated or any of its subsidiaries of any vendor, products or services contained in this presentation is intended or should be inferred

OVERVIEW

- Is there a need for adaptation?
 - Clinical rationale
 - Head and neck
 - Lung
- The workflow
- The uncertainties
 - Deformable registration (DIR)
- Cost / benefit
- How do we do it?

GENERAL INFORMATION

- Important role in cancer management
- Improvement is impeded by variability
 - Dosimetric variation by daily set up error
 - Radiation beam placement error
 - Changes of patient anatomical position, shape, and volume (weight loss, tumor response)
 - Biological variation throughout the treatment (the information from the PET images)

ADAPTIVE RADIOTHERAPY

EVOLUTION OF ADAPTATION

- NTCP
- TCP
- Clinical Trials
- Protocols

Outcomes

EVOLUTION OF ADAPTATION

EVOLUTION OF ADAPTATION

Brook et al, 2019

ARTIFICIAL INTELLIGENCE (AI)

- To decrease the workload
 - Contouring
 - Registration
 - Planning
 - Quality assurance (QA)
 - Decision-making
- Objective
- Time consuming
- To change impossible into probable

CLINICAL PRACTICE - RATIONALE

- Clinical implementation is complex
- Requires fundamental shift of the infrastructure
- No level I evidence to prove the benefit
- No international guidelines
- Clinical data
 - Head-and-neck cancer
 - Lung cancer
 - Cervical cancer
 - Liver cancer
 - Bladder cancer
 - Prostate cancer

- Standard of care in organ sparing treatment
- 7-week period
- Major anatomical changes (weight loss, parotid / tumor shrinkage)
- Under / over dosage of target and OAR
- With the advent of 3D serial imaging
- Customized planning throughout the treatment
- Daily set-up accuracy

Table 1 Clinical Benefits of ART in Patients With Head and Neck Cancer

Author (year)	Nb	Patients	Tumor site	Total dose	Repla	nning Strategies			Clinical Endpoint	
	ART No ART No Nb Timing Follow-U	Follow-Up (months)	Loco-regional Control and Survival	Acute Toxicity	Late Toxicity					
Schwartz et al 11, å	22	0	OPC	66-70	1 or 2	16th and 22th fr	31	2-year LRC = 95%	G III mucosal = 100% G II xerostomia = 55% G III xerostomia = 5%	Full preservation or functional recovery of speech and eat- ing at 20 months
Kataria et al ⁶⁹	36	0	LAHNC	70	1	54 Gy		2-year DFS = 72% 2-year OS = 75%	G II-III mucosal = 100%	G II xerostomia= 8% G II muco- sal = 11%
Yang et al ^{70,} ∗	86	43	NPC	70-76	1 or 2	15th and/or 25th fr	29	2-year LRC 97.2% (ART) 82.2% (no-ART) <i>P</i> = 0.04 2-year OS 89.8% (ART) 82.2% (No-ART) <i>P</i> = 0.47		Improvements in quality of life with ART
Chen et al ⁷¹	51	266	LAHNC	60b 70μ	1	40 Gy (10-58Gy)	30	2-year LRC 88% (ART) 79% (No-ART) <i>P</i> = 0.01 2-year OS 73% (ART) 79% (No-ART) <i>P</i> = 0.55	G III: 39% (ART) 30% (No-ART) P = 0.45	G III: 14% (ART) 19% (No-ART) P=0.71
Zhao et al ⁷²	33	66	NPC	70	1	15th (±5) fr	38	3-year LRFS 72.7% (ART) 68.1% (No-ART) <i>P</i> = 0.3		No difference except less xerostomia and mucosal with ART for N2 and N3 patients

Table 2 Dosimetric Benefits of ART in Patients With Head and Neck Cancer (From Castelli et al)

Author (year)	Author (year) Nb Patients		nning Strategies	Dos	imetric Analysi	s		Dosimetric Be	enefit
		Nb	Timing	Time Point to Cumulate the Dose	Method to Cumulate The Dose	Total Dose for the Comparison (Gy)	Parotid Gland (Dmean)	Spinal Cord (Dmax)	Target Volume (PTV)
Capelle (2012) ⁷³	20	1	3rd week	2	Average DVH	66	-0.6 Gy *	-0.6 Gy *	+0.5 Gy (D1%)*
Castelli (2015) ⁷⁴	15	6	Weekly	7	DIR	70	−3.8 Gy*	_	_
Dewan (2016) ⁷⁵	30	1	40 Gy	2	DVH	30	IL −6 Gy* CL −2.2 Gy	−66 Gy*	More uniform coverage Decrease V110% by 2*
Duma (2012) ⁷⁶	11	1	16th (9th-21st) fr	1	DVH	2	No variation	−0.14 Gy	-
Jensen (2012) ⁴	15	2 to 4	– IL-3.8%	3 to 5	DIR	70	CL: - 11.5% [†]	-	Improvement of coverage by 8%
Olteanu (2014) ⁷⁷	10	2	8th and 18th fr	3	DIR	70	-6% ^{†,*}	-	Higher minimum and lower maximum doses
Schwartz (2013) ¹¹	22	1 or 2	16th and 22nd fr	2 or 3	DIR	70	−0.7Gy*	-	Increase coverage and dose homogeneity
Zhao (2011) ⁷²	33	1	15th (±) fr	2	DVH	37.5 Gy (20-50 Gy)	Decrease mean dose*	_	-

- Majority willing to increase the use of ART in head and neck
 - To improve clinical outcome
 - Improve productivity
 - Improve therapeutic ratio
- Barriers:
 - The lack of equipment
 - Lack of training
 - Lack of tools / support
 - Resource heavy
 - Time consuming

- Chemoradiation to 60-70 Gy in locally advanced disease
- 6-7 week period
- The addition of immunotherapy increases survival
- No room for dose escalation
- 30-35% local recurrence
- Lung and heart toxicity effects survival

 Table 1 Lung Density Changes Observed Across Multiple Large Patient Studies During Radiation Therapy Treatments

Study	No. Patients	Tumor Anatomical Shift	Atelectasis	Pleural Effusion
Kwint (2014)	177	27%	19%	6%
Elsayad (2016)	71	10%	20%	25%
Moller (2014)	163	_	15%	8%
Van Zwienen (2008)	114	_	29%	13%

Table 2 Tumor Regression Rates for Patients Diagnosed With Stage III NSCLC Treated With Definitive Radiation

Study	No. Patients	lmaging Modality	Volume	Midtreatm	ent Tumor Reduction	Near End of treatment Tumor Reduction		
				Median Fraction (Range)	Median Regression (Range)	Median Fraction (Range)	Median Regression (Range)	
Kataria (2014)	15	Helical kVCT	GTVp	22nd-23rd	−34% (−13.8% to −73.0%)	_	_	
Spoelstra (2009)	21	Helical kVCT	qVTI	15th (14th-17th)	Not reported (+47% to -25%)	_	_	
Berkovic (2015)	41	kV CBCT	GTVp	_	_	30th	-42.1% (-4.0% to -69.3%)*	
Fox (2009)	22	Helical kVCT	GTV _p	15th (4th-20th)	-24.7% (+0.3% to-61.7%)	25th (21st-33rd)	-44.3% (-0.2% to -81.6%)	
Wald (2017)	52	kV CBCT	GTVp	11th	-30% (+24.0% to -84.3%)	30th (24th-35th)	-62% (-3.4% to 91.2%)	
Elsayad (2016)	37	kV CBCT	GTVp	_	_	30th	-35% (+22% to -78%)	
Ramella (2017)	50	Helical kVCT	CTV	_	_	"When replanned"	-42% (-15% to -67%)*	
Seibert (2007)	17	MVCT	GTVp	_	_	32nd (25th-37th)	−58.5% (+18% to −79%)	

 $\label{thm:condition} \textbf{Studies Include a Combination of Sequential and Concurrent Chemotherapy}.$

^{*} mean. CBCT, cone beam CT. GTVp, primary gross tumor volume. ITVp, primary internal target volume. CTV, clinical target volume.

- 125 patient 20% ART
- 3-4th week
- Daily CBCT
- Dose to PTV and OAR

OAR	Constraints	IMRT _{In}	IMRT _{Proj}	IMRT _{ADAPT}	IMRT _{In} vs. IMRT _{Proj}	IMRT _{Proj} vs. IMRT _{ADAPT}
	V ₅ (cc)	50	54	40	0.01	0.003
Lung	V ₂₀ (cc)	24	28	20	<0.001	<0.001
	D _{MLD} (cGy)	1429.45	1680.66	1167.59	<0.001	<0.001
Heart	V ₂₀ (%)	22.37	19.6	13.42	0.166	0.024
Tieart	V ₆₀ (%)	4.03	3.68	1.48	0.751	0.012
Spinal Cord	D _{MAX} (cGy)	4056.06	4527.32	3778.32	0.025	0.007
	D _{MLD} (cGy)	2763.77	2994.32	2290.99	0.076	<0.001
Esophagus	V ₄₀ (%)	35.12	38.07	27.24	0.146	0.006
	D _{MAX} (cGy)	6681052	6836.35	6815.68	0.009	0.927
Body	D _{MAX} (%)	110.57	114.5	109.76	<0.001	0.001

CLINICAL CHALLENGES FOR LUNG ART

Trial record 1 of 1 for: RTOG 1106/ACRIN 6697

Previous Study | Return to List | Next Study

Study of Positron Emission Tomography and Computed Tomography in Guiding Radiation Therapy in Patients With Stage III Non-small Cell Lung Cancer

A

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our <u>disclaimer</u> for details.

-Which philosophy?

ClinicalTrials.gov Identifier: NCT01507428

Recruitment Status 1 : Active, not recruiting

First Posted 1 : January 10, 2012

Last Update Posted 1 : January 22, 2020

KEY TECHNOLOGIES FOR PRACTICAL WORKFLOW

- 3D imaging
- Assessment (manual evaluation to highly automated review of cumulative dose)
- Replanning (standard planning for offline time!!!)
- QA

THE UNCERTAINTIES

- Deformable registration (DIR)
 - -Commissioning
- Auto-segmentation
- Dose accumulation

HOW DO WE DO IT?

- Full neck radiotherapy, head and neck cancer
- Radixact® System
- **1**0/2018
- Ongoing adaptive workflow for linac treatments
- PreciseART® since mid 2019

HOW DO WE DO IT?

- All patients are potential for adaptation
- Enroll to PreciseART® during plan approval
- Template (OAR and PTV)
- Dedicated IGRT dosimetrist from the second week
 - −2 days a week
- PreciseART® software check

HOW DO WE

Expected Dose vs Accumulated Dose

Contour	Constraint Name	Expected	Fulfilled	Accumulate	Fulfilled	8 Change
PTV60rev	PTV60rev, D95%>60Gv	2922.32 cGv	4	2730.12 cGy	×	0.29
PTV66rev	PTV66rev, D95%>66Gy	3002.89 cGv	~	3029.26 cGv	~	0.88
PTV70rev	PTV70rev, D95%>70Gy	3273.76 cGv	•	3130.19 cGv	×	-1.37
L Parotid	L Parotid, Dmean<30 Gy	1319.89 cGy	•	1711.74 cGy	×	29.68
Oral Cavity	Oral Cavity Dmean<30Gv	1632.58 cGv	•	1707.11 cGy	•	4.57
PTV60rev	PTV60rev, Dmax<66Gy	3134.31 cGy	•	3227.4 cGy	•	2.97
PTV66rev	PTV66rev, Dmax<69.5 Gy	3168.73 cGy	•	3268.54 cGy	•	3.15
PTV70rev	PTV70rev, Dmax<77Gy	3343.44 cGy	•	3374 cGy	•	0.91
R Parotid	R Parotid, Dmean<30Gy	1414.99 cGy	•	1799.2 cGy	×	27.15
Spinal Cord	Spinal Cord, Dmax<50 Gy	1711.13 cGy	•	1821.12 cGy	•	6.43

Expected Planned Dose vs Accumulated Dose

Dose ID	se ID Line Style			Dose Details							
D1		_		Expected	Expected Planned Dose						
D2				Accumulated Dose							
Contour	Contour Color		Г	Max [Oose	Min E	Oose	Mean Dose			
				D1	D2	D1	D2	D1	D2		
L Parotid				3,335.02	3,333.02	91.67	87.11	1,319.89	1,711.74		
PTV60rev				3,134.31	3,227.40	1,622.94	1,724.53	2,795.79	2,840.00		
PTV66rev				3,168.73	3,268.54	2,897.60	2,900.96	3,061.15	3,097.63		
PTV70rev				3,343.44	3,374.00	2,830.03	2,487.12	3,247.73	3,253.09		
R Parotid				3,286.81	3,297.80	86.62	82.27	1,414.99	1,799.20		
Spinal Co	rd			1,711.13	1,821.12	13.05	10.35	770.26	782.97		

HOW DO WE

Total Planned vs Projected Dose

Contour	Constraint Name	Total Planned	Fulfilled	Projected	Fulfilled	% Change
Oral	Oral Cavity	2991.67		3131.11	×	4.66
Cavity	Dmean<30Gy	сGу	•	сGу	*	
PTV60rev	PTV60rev,	6029.11		6031.68		0.02
	D95%>60Gy	сGу	*	сGу	•	
PTV60rev	PTV60rev,	6595.48		7148.27	×	8.38
	Dmax<66Gy	cGy	•	сGу	^	
PTV66rev	PTV66rev,	6941.2 cGy		7201.51	×	3.75
	Dmax<69.5 Gy		*	сGу	^	
PTV70rev	PTV70rev,	7182.26		6932.33	×	-0.72
	D95%>70Gy	cGy	•	сGу	•	
R Parotid	R Parotid,	2912.98		3526.5 cGy	*	21.06
	Dmean<30Gy	cGy	•		•	
L Parotid	L Parotid,	2903.75		3226.55	×	11.12
	Dmean<30 Gy	cGy	*	сGу	•	
PTV66rev	PTV66rev,	6606.35		6721.32		1.74
	D95%>66Gy	cGy	*	сGу	*	
PTV70rev	PTV70rev,	7355.56		7455.9 cGy		1.36
	Dmax<77Gy	сGу	•		•	
Spinal	Spinal Cord,	3764.5 cGy		3866.41		2.71
Cord	Dmax<50 Gy		•	сGу	•	

Total Planned Dose vs Projected Dose

Doseid		ie Style		Dose Details							
D1		_	Total Plai	Total Planned Dose							
D2		• •	Projected	Projected Dose							
Contou	Contour Color			Dose	Min E	ose	Mean Dose				
			D1	D2	D1	D2	D1	D2			
L Parotid			7,337.04	7,347.82	201.68	188.18	2,903.75	3,226.55			
PTV60rev	'		6,895.48	7,148.27	3,570.46	3,921.93	6,150.73	6,271.64			
PTV66rev			6,971.20	7,201.51	6,374.72	6,397.37	6,734.53	6,837.93			
PTV70rev	1		7,355.56	7,455.90	6,226.07	6,104.52	7,145.02	7,183.52			
R Parotid			7,230.99	7,290.71	190.56	179.53	2,912.98	3,526.50			
Spinal Co	ord		3,764.50	3,866.41	28.71	22.36	1,694.57	1,716.70			

HOW DO WE DO IT?

PLAN

VOLÜMLER

PLAN CT

Expected Planned Dose vs Accumulated Dose

SUMMARY...

- Adaptive is in the frame
- More technological evolution
- Workload time
- Selected patients
- Data!!!